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Abstract 
The theoretical treatment of a scanning calorimeter usually is performed by 
investigating electrical analog circuits with discrete elements like capacitors 
and resistors. In this paper the system is considered as being continuous 
and thus is treated by the field equation of heat conduction. We shall 
calculate the shape of temperature and the signal in the cases of no 
thermal event, an exothermal reaction, an endothermal phase transition. The 
latter is assumed to happen in a thin and a thick sample where the pha- 
se boundary moves adross it. All solutions are derived by analytical methods. 

1. Introduction 

In the common textbooks about calorimetry such as C21 the theoretical 
treatment is performed by models consisting of discrete elements i.e. the 
theoretical calculation of the signal is based upon electric analogue circuits 
containing capacitors and resistors. The calorimetric device, however, should 
be considered as beiig continuous and thus the treatment should be perfor- 
med by the equation of heat conduction [3,4]. In spite of some critical re- 
marks with respect to this well known field equation Cl] refering to the non- 
linearities caused by the dependence of the heat conductivity and the heat 
capacity on tem~ra~e we shall apply this equation here because of an 
easy mathematical framework. In order to get a more basical understanding 
of the heat transport we shall restrict ourselves to almost simple one dimen- 
sional models of a power scanning calorimeter [2] which is heated by a 
constant rate. The models shall be treated only by applying analytical 
methods i.e. by Laplace transformation E4.5.61. The calorimetric device is 
illustrated ~hematic~y in fig.l. 

The equipment consists of a reference and of a sample system which 
are almost identical. At the bottom (z - 0) they are heated by a constant 
increase @ of temperature. The sample system is kept at the same temperature 
as the reference system. Thus any difference in the power used for heating 
has to be due to any thermal events in the sample system. The sample 
system consisting of the sample itself and of the sample holder which 
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belongs to the calorimetric equipment is represented only by a homogeneous 
rod. This is a rather large simplification but a more detailed model consisting 
of two parts one representing the sample holder and the other one represen- 
ting the sample cannot be resolved actually by analytical methods [Il. 

Z 

T(O,t)=T, + p t 

Fig.1: Schematical illustration of a power compensated calorimeter 

Anyway the treatment by the simple model will give some new aspects. We 
shall calculate the shape of temperature and the signal in those cases where 
no thermal event, an exothermal event and an endothermal one happen. The 
latter will also be discussed for the case of a thick sample where a phase 
boundary is moving across it. 

2. An Almost General Solution of the One Dimensional Field Equation By 

Laplace Transformation 

Assuming a homogeneous 
heat capacity the field equation 

V2T(r,t) q o( yt) 

In the case of one dimensional 

system with constant heat conductivity and 
is a linear partial differential equation Cl,4,51 

(2.1) 

transport (2,l) is simplified as 



d”T(z.t) 
dz2 

= a c)T(z.t) 
dt 
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c&2) 

where a denotes the inverse thermal diffusivity. The Laplace transformation 
Cl] with respect to the time t yields an inhomogeneous ordinary differential 

a2Tp,s, as T(z,s) = - .a T(z,O) 
dZ” 

(2,3) 

equation T(z.0) denotes the initial shape of temperature. The general solution 
of (2,3) is given as where Tr (za> denotes one particular solution of the in- 
homogeneous equation (2,3).%e latter can be obtained by the Laplace trans- 
formation with respect to z which yields an algebraic equation. 

(k2 - as) Tlnhfk,s) = - a Tfk,s) (2.5) 

According to the theorem of convolution the transformation back into the re- 
gime of z yields 

P 

T,(z,s) = - & s smh G (z-z’) T(z’,O) dz (2.6) 

0 

The integration constants A, B have to be determined from the boundary 
conditions at z - 0. z - L. respectively. Because of the constant increase of 
temperature at z - 0 

T(O,tI = To + 8 t (2,7) 

(2,4) is obtained as 
z 

T(z,s) = T(O,s) cash ,&3 z + B sinh Gz - * s sinh* (z-z’) T(z’,O) dz’ 
0 

(2.8) 
The second integration constant B depends on the physical problem one 
is dealing with. 

2.1. Shape of Temperature And Signal Without Any Thermal Event 
The heat conductor is adiabatically isolated at z - L. Assuming the ini- 

tial shape of temperature as being uniform 

T(z,O) = 0 

one obtains 

(2.9) 



(2.10) 

The transformation back into the regime of time t is given by the convolution 
of T(O,t) = it with y(z,t> 

where y,’ is defined as 

y2 I (2n+ 112x2 
n 4aL2 

Thus one gets by carrying out the convolution 

16aL2 = sin(2n+l)ff 
T(z,ti = Bt - a@Lz(l-&) + -;;um& (2n+l)a 

(2,111 

CL121 

e 
-Yit 

(2.13) 

0.04 0.08 0.12 0.16 m 

Fig.2: Parabolic shapes of temperature of an enlarged model of the sample 
holder with the sample. The model consists of a rod of copper heated 
at one boundary and adiabatically isolated at the other one. 
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The solution converges to a parabolic shape of temperature. The exponen- 
tials are caused by switching on the heater at the time t - 0 where the shape 
of temperature has been uniform. In fig. 2 this shape of temperature is illustra- 
ted for large values of time. The gradient of temperature vanishes at z - L 
because of the boundary condition of adiabatical isolation. 

The signal is obtained by calculating the heat flow at z - 0 

J(O,t--,=I = - lFF (2,141 

where X. F denote the heat conductivity and the cross sectional area, respec- 
tively, and by subtracting the heat tlow of the reference. Thus one obtains 
the well known result 

AJ(t+=) q BAC (2,151 

AC denotes the difference of heat capacity between the sample and the re- 
ference. 

22 Shape of Temperature And Signal in the Case of an Exothermal Event 
Now we assume that a thermal event - e.g. an exothermal chemical reac- 

tion - happens which is described by the boundary heat flow 

J&t) = - XPqp (2,161 

Additionally we assume the intial shape of temperature as being parabolic 
as is illustrated in fig.2. So one gets from (2,6), (2,8) with the help of the boun- 
dary condition (2.16) 

T(z,s) = T(O,s) cash 6% (L-Z) _ _i_ 
cosh=L X F &~o~~LJ(Lgs) - 

ShhfiGZ 
dT,(L,s) 

6 coshfZiL az 
+ T,(z,s) (2,171 

The calculations are considerably simplified by subtraction of the temperature 
of the reference, where J(L,s) vanishes. Thus it is obtained 

(2,181 

This result enables us to calculate the signal 

A.J(s) = - ,, F (3AT(O.s) = 
BZ ..A GiL J(Ldd (2,191 

Hence the signal is a linear response of the production of heat 
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t 

LLJk) = s 
G(t-t’) J(Lf’) dt’ 

0 

with the G(t) function Ci’l 

(2,201 

(2n+D2 x2 

G(t) = $$oHIn (2n.l) e 4aL2 t (2,211 

For some applications it should be useful to know the real temperature of 
the sample i.e. the temperature at z - L - e.g. for chemical reactions where 
the rate constant depends on temperature. This requires the transformation 
of (2,181 back into the regime of time and adding the parabolic shape of 
the reference temperature. Thus it is yielded 

T(z,t) = To+ B t - aBLz(l-&) - $2 (-1)” sin(zn+l)ff 
11=0 

s 

t _T(,_,‘) 

e J(L,t’) dt’ 
0 

(2,221 

To denotes the apparent onset temp;rature of the reaction which measured 
by the calorimeter whereas To- a@L /2 denotes the real temperature of the 
sample at that time. 

2.3. Endothermal Transition 
The endothermal transition is divided into two intervals of time: t < t 

where the transition happens and t > t where the transition has stopped ba 
where the signal decreases back to t?te base line. 

2.3.1. Shape of Temperature And Signal During the Transition 
Now an endothermal event in a thin sample situated at z - L is assumed 

which is described by an isothermal boundary condition at z - L. Furthermore 
it is assumed that the uniform shape of temperature at the beginning when 
the calorimeter has been switched on is forgotten. Thus we have the parabo- 
lic shape of temperature (2,l3) as an initial condition. According to the isother- 
mal boundary condition at z - L one finds with the help of (2,8) 

z 

T 
u = T(O,s) cosh6L + B sinh fiL - & 

S s 
sinh *(L-z’) T(z’,O) dz’ 

0 (2.23) 

where T, denotes the true temperature of the transition. This yields the La- 
place transformed shape of temperature: 



T(z.s) q T(O,s) w + + .mf + 
stnh &i (L-z’) Tfz’,O) dz’ - 

0 

i%i s sinh ,‘iii (z-z’) T(z’,O) dz’ 
0 
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(2,241 

The initial shape of temperature consists of the steady state terms of (2,131 

T(z.0) = To - a fl L z (1 -&I (2.25) 

where To denotes the temperature of the transition indicated by the calori- 
meter. The integrals have been evaluated in the appendix. So one finds after 
a lot of calculation 

2607 

250 nnf4 n17 

-z 
Fig 3: Time dependent cubic parabola describing the shape of temperature 

of the same rod of copper which is heated at one boundary and kept 
isothermal at the other one. 

The initial shape of temperature consists of the steady state terms of (213) 
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T(z.0) = T, - apLz(l-&) (2,251 

where To denotes the temperature of the transition indicated by the calori- 
meter. The integrals have been evaluated [i’l. So one finds after a lot of cal- 
culation 

T(z,s) = T(O,s) - (2.26) 

After the transformation back into the regime of time the shape of temperature 
is obtained as a Fourier series in z which has to be calculated. Thus one 
yields 

T(z,t) = To+Bt(l-f) - iaflLz + e - & q 

(2,271 

The last term is associated with the onset of the thermal event and vanishes 
for large times. This shape of temperature one obtains for large values of 
time is illustrated in fig.3. 

From (2,271 one gets the heat flow into the sample which is the original 
desmeared thermal event and which performs the phase transition. 

J(L.t) = 9 Bt + &Co - 9 (2.281 

The heat flow at z - 0 is determined as 
2 2 

_nt 

(2.29) 

This heat flow performs the heating of the calorimeter and the phase transi- 
tion in the sample. The difference 

(2n+l)2 7c2 t 

aL2 
(2,301 

is stored in the calorimeter and causes the increase of temperature. It is 
quite elucidating that only one half of the heat capacity appears in (2,301 
for large periods of time: the reason is the shape of temperature illustrated 
in fi 
(2293 

.3 which means that only a part of the sample system is heated. From 
one obtains the total signal of the calorimeter 
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AJIt) = J(O,t) - J,,(O,t) .= YfI t + AC (3 - &C (3 

(2.31) 

AC denotes the difference of the heat capacity between the system of the 
sample and the reference. According to (2,151 the term AC f3 represents the 
base line. It should be emphasized that the term -l/6 C B does not appear 
in the classical treatments. Hence the straight part of the signal which is 
represented by the term AA/L Bt does not intersect the baseline at t - 0 but 
lateron at t > 0. This Could be a reason that the obvious onset temperature 
To estimated from the signal is too large. 

2.3.2. Relaxation After the Phase Transition 
After the endothermal phase transition the upper boundary at z - L is 

adiabatically isolated just as before the phase transition. Hence the integra- 
tion constant B of eq. (2,8) is given as 

B= - T(O,s) s + $& 1 cash &ii (L-z’) T(z’,O) dz’ 

0 

The initial shape of temperature is obtained from (2,241 for t+m 

T(z,O) = To + fjt,(l-f) - #a@Lz + + + # 

(2,32) 

(2.33) 

After a lot of calculation one gets the Laplace Transform of the shape of tem- 
perature 

T(z,a) I T(O,z) +;(p+ #a@L)( ‘lahGz - 
,‘?Z cosh/b;;;L 

z) + 

(2.34) 

The transformation back into the regime of time has been performed in [71 
Hence the shape of temperature is obtained as 

T(z,t) = To+ Bt, + fit - aBLz(l-&I - 

(Zn+lP x2 

4aL2 
t 

cos (In+l$ (1 -El 
x2 t (2n+l12 

(2n + lI4 

e 4aL2 
(2.35) 
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Obviously (2,311 converges to the well known parabolic shape of temperature 
(2,l3> as it should be. From (2,311 the signal is determined as 

AJ 

AC/b QCP 

to 
-t 

Fig. 4: Signal of the calorimeter during and after the endothermal transition. 
The straight part of the curve intersects the AJ axis below the base- 
line in contrast to the classical treatments. 

AJW = AC@ + #q3to - #CB) 

(2.36) 

In fig. 4 the signal during the transition and afterwards during the period of 
relaxation is illustrated. 
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2.3.3 Endothermal Transition with a Moving Phase Boundary 
In a thick sample one has to take into account that the melting cannot 

take place all over the sample but that it will start in regions near the heater. 
It will go on by a moving boundary between the liquid and the solid phase 
the position of which depends on the heat already transported into the sam- 
ple, i.e. 

J(LW,t) = h m = hpV = hpALW (2,371 

h denotes the mass specific enthalpy of melting, m, V the increase of mass 
and of volume of the ‘molten phase, respectively. In fig.5 the one dimensio- 

0 
T(O,tl=To+Pt 

Fig. 5: One dimensional model of melting of a thick sample with moving boun- 
dary between the liquid and the solid phase. 

nal model of melting of a thick sample is illustrated. This model is not very 
realistic because it is assumed that the heat conducting sample holder, the 
liquid and the solid phase do not differ in the heat conductivity and the spe- 
cific heat capacity. A more detailed model would require, however, resolving 
the field equation of an inhomogeneous heat conducting rod which cannot 
be achieved by analytical methods only Cl]. 

Inserting Fourier’s law into (2,371 yields after integration 

t 

L(t) = L, - & 
s 
BTK;' , t') dte 

0 

(2,381 
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This integral equation %annot be resolved exactly because the integrand is 
the solution of the field equation with the time dependent isothermal bounda- 
ry condition L(t). It can be resolved approximately for slow heating rates, how- 
ever. In this case there is time enough to get a shape of temperature corresp- 
onding to a fixed boundary at each moment. So one inserts the solution of 
the thin sample (2,28) into the differential equation (2,371 

2 2 

-1 
_u2t 

J(Lk1.t) =+&St + $cpA@LW - yL(L) q-i e OrLW 
n= n 

= hpAi(t) (2,391 

This differential equation is nonlinear and inhomogeneous. It cannot be resol- 
ved exactly because of the exponentials containing the function L(t). So the 
series of exponentials has to be neglected which means that the part of 
length Lo belonging to the calorimeter is sufficiently short. Thus one yields 
the differential equation 

6 p - $BfgLNP = &;et 0,401 

as a differential equation which is linear in L2(t>. The solution is given as 

/ -a 1 

L(t) = JC L2+9Xh 
O 2c2pfi 

)e’ t _ $At _ x 

From this result one easily calculates the signal of the calorimeter 

&J(t) = $0 et + icpAfiL(t) - Cre,fi (t < toI 

(2,411 

C ef denotes the heat capacity of the reference system. After the phase tran- 
s&on there is the period of relaxation where the signal decreases down to 
the base line. During this period the signal is given by (2,361 where L de- 
notes the total constant length L, t and the length of the liquid phase after 
the transition. In fig.6 the signal 8 the calorimeter is illustrated. 
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. 

Fig. 6: Signal of the calorimeter versus time or the indicated temperature 
T(0.t) = To + @t 

2.3.4. Discussion 
The results derived for the simple model reveal some new aspects com- 

pared with the common treatments Cl] which are illustrated in fig.?. The latter 
shows the signal during the transition according to (2,311 (2,42), respectively. 
According to (2.13) the initial shape of temperature at the beginning of the 
transition is parabolic. So the obvious temperature of the transition To is too 
large compared with the true one T,. A further reason why this temperature 
is overestimated from the signal is the following: the straight part of the sig- 
nal AJ(t) does not intersect the AJ-axis at the base line AC fi but at the value 
AC B - l/6 C g. This means more physically spoken: there is some more heat 
needed for the transition which causes a certain increase of the signal and 
there is less heat as before the transition needed for heating the sample 
system because the temperature remains constant at the upper boundary z 
- L. Hence the increase of the signal at the beginning is weak and the 
obvious temperature To might be overestimated. The balance of energy 



306 

yields for the total heat of transition 

% % c13 

Q = J J(L.t) dt = J @J(t) - AC B) dt + J &J(t) - AC @) dt 
0 0 

tO 

(2,431 

Fig. 7: Signal AJft), desmeared heat flow JlL,t) during and after an endothermal 
transition. 

3. Final Remarks 

The shapes of tem~rat~es and the signals have been calculated for the 
cases of 
a) no thermal event 
b) an exotherrnal event 
c) an endothermal event in a thin sample 
d) an endothermal event in thick sample with a moving phase boundary We 
yielded the following result for large periods of time where the phenomena 
due to any initial shape of temperat~e are negligeably small 
a) parabolic shape of. temperature. the baseline of the signal AJ differs from 

zero if the sample and the reference system are of different heat capacity 
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b) the shape of temperature and the signal depend on the heat production 
as linear responses i.e. they are obtained as the convolution integral of 
the original thermal event with the G-functions that have been calculated 
from the one dimensional model. 

c> The shape of temperature is a time dependent cubic parabola. In contrast 
to the classical treatments the signal intersects the AJ axis below the base- 
line as is illustrated in fig. 567. This shift may cause an error in the tem- 
perature of the transition estimated from the signal. The enthalpy of the 
transition is not influenced, however. 

d) In contrast to c> the signal does not increase constantly during the tran- 
sition but the increase becomes weaker in time because the sample itself 
becomes “longer”. 

An interesting result is the shifting of the signal during the endothermal tran- 
sition mentioned above which may also lead to modifications of the methods 
how to obtain the base line during that period of time for those cases where 
the new and the old phase differ in heat capacity. For instance we do not 
want to deal with that problem because the model of the homogeneous rod 
is too simple and it is not very realistic. A more detailed model consisting of 
an inhomogeneous rod cannot be resolved exactly, however, i.e. the Lapla- 
ce transforms can be calculated but the only problem is the transformation 
back into the regime of time. We do hope, however, to get the exact solution 
in the surroundings of three particular cases with respect to the heat conduc- 
tivity and heat cpacity of both phases. 
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